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The use of differential equations such as EikonakHamilton-Jacobi and Poisson for the

economical calculation of the nearest wall distancd, which is needed by some turbulence
models, is explored. Modifications that could pallite some turbulence-modeling anomalies
are also discussed. Economy is of especial value fieforming/adaptive grid problems. For
these, ideally,d is repeatedly computed. It is shown that the Eikoal and Hamilton-Jacobi
equations can be easy to implement when written implicit (or_iterated) advection and
advection-diffusion equation analogous forms, resmpéively. These, like the Poisson
Laplacian term, are commonly occurring in CFD solves, allowing the re-use of efficient
algorithms and code components. The use of the NASBFL3D CFD program to solve the
implicit Eikonal and Hamilton-Jacobi equations is eplored. The re-formulated d equations
are easy to implement, and are found to have robustonvergence. For accurate Eikonal
solutions, upwind metric differences are required.The Poisson approach is also found
effective, and easiest to implement. Modified disteces are not found to affect global outputs
such as lift and drag significantly, at least in common situations such as airfoil flows.

Nomenclature

turbulence modeling constant
lift and drag coefficients

wing chord

nearest wall distance

distance function

array or grid point indices

length scale function or modified Laplacian

metric term in transformed equations or Mach bem

number of iterations

exponent, weighting/biasing parameter or outwacihg normal

marker in marching front procedure for see@d] r points to be later solved
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R, = residual folJ equation

Re = Reynolds number based on wing chord

U = front propagation velocity implied in Eikonalwegion

u, v = Cartesian velocity components for Eikonal frprdpagation

X, Y = Cartesian coordinates

y* = distance to nearest surface in ‘wall units’

a = grid expansion or under-relaxation parameter

rr = diffusion analogous coefficients in equation®(B)

£ = constant in diffusion analogous coefficient enailon (see Equation (10))
A = viscosity solution coefficient

&n = transformed coordinates

@ = dependent variable in differential wall distameealistance function equations
Q = domain for wall distance or distance functiompuitation

Q = reduced domain for wall distance or distancefiom computation

w = solid angle

I. Introduction

Wall distancesgd, are still a key parameter in many turbulence ringeapproachés and also in peripheral
applications incorporating additional solution plogs®. Also, their near wall iso-values can be usedrid g
generatio”®. Far field d contours can be used as a rapid means of evajuamputational interfaces on
unstructured overset meshes having relative moveshen

Surprisingly, with search procedures, tHerein calculatingd can be significant. For example, even with Cray
C90 class computers and time invariant meshesnitalee 3 hours just to gathin a large three-dimensional cise
Because of the expense and inter-block communitatgsues, in some codes the following dangerous
approximations are made:
i) computing distances down grid lines, not allogvior grid non-orthogonality;
if) computingd as the distance between a field point and theesearallgrid point, instead of truly the surface; and
i) in multiblock grids, determiningl on a purely block wise basis, ignoring the podisjbihat the nearest wall
distance might be associated with another blocle [Etter can create large inaccuracies and alsesmmoth,
unhelpful-to-convergence, distributions. In relation to point (iii), for oveet grids the situation can arise where the
same point in space has different equations depgrah which block it is viewed from. In such a cabere is no
reason why the solution should converge at all.

Clearly, inexact, non-smooth or grid-blogkilependent wall distances will mostly be unhelpful. However,
the deliberatemodification ofd to some distance functiod can alleviate certain secondary turbulence model

anomalies or extend modeling poteriti&or exampleﬁ >>d can alleviate the excessive influence of sharp ernv
features in the geometry on the turbulence mddefor corners or bodies/surfaces in close proxintiite increased
multiple surface turbulence damping effect (see Meam et al’, Launder et al) can be crudely modeled by

settingd <d.

A. Requirements of an ‘Ultimate’ Distance Function

Following Ref. 11 a preferable distance-fiorc (a) behaviour is perhaps best captured in terms ef th
elemental solid anglelcx This is the angle subtended by a patch, on sfid surface of radius of curvatuRe a
distanced from a field point. Hence Ref. 11 proposed

1_1p dw
d:_ﬂjl_ €N
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(here we correct the factor of 2 error in the eiquiadf Ref. 11) where the continuous wall distadazan be found
from say a nearest surface search (NSS). Heretuttwllence length scale function is= 1, but for certain
turbulence modeling requirements this may not & b&urbulence models are calibrated with a singlesurface

mostly in mind withd << Ror «~ 277 In that case, from Equatlon (1()| d. For several surfaces at about the

same distance, the blocking effects are weaklytagdand sod < d seems sensible. Howevat,should not greatly
deviate fromd. For instance, a reasonable effect, for two sedawould be to have the following harmonic related

mean 18" = 1/ d +1/d; whered, and d, are the distances to the two walls ang 2 (in Ref. 11n =1 is

suggested). For a channel, helpfully, considerirgghtarmonic type mean with= 2, & = 4/ and for a flap cove
@ > 2ri.e. extra turbulence destruction is naturallyodticed.

The opposite situation is when the solid yoé&l much smaller than its distance to the fieldnpainder
consideration, or in other words the total soliglant covers is much smaller than 1. An exampla ifin wire,
which clearly has a much weaker damping effect théarge flat surface at the same distance. Weriked to have

d >>d. This also helps remedy the excessive modeledileembe destruction that can be found around extreme
convex featurds

The above are all accuracy, or physics, idenations, and rather preliminary. Numericathfield smoothness
and computing speed are always desirable. Thisre e key focus of the current paper. In addjttbe accurate
integration of Equation (1) with high-aspect-ragjod cells near the wall is far from trivial, anket approach of
directly solving (1) may be quite unattractive magtice for that simple reason.

B. Differential d Equations
Motivated by the expense of ttheolution Sethiahconsidered the Eikonal equation below

D¢ =1+ 0% 2)

seeking viscosity solutions wheke— 0. The dependent variable in equation @)nodels propagating front first
arrival times. The right hand side implies (awagnirshock-like features) the front has unit velqcitg. there is
some velocity field withy| = 1. This means first arrival times are equal.tfares and Schrodezssentially solve

an Eikonal related equation fg#*. To enhance modeling potential, the Laplaciandwase control oved . The
Eikonal equation with an explicit Laplacian, asdvelis called a Hamilton-Jacobi (HJ) equation.

||]¢1:1+ Mreo’e 3)

Solving for ¢ as in Ref. 1 could overcomplicate programming eegiliires an additional arbitrary length scdje
to avoid infinite values at the wall. Also, in Ré&f.no observation of the need for upwind differehoeetric terms

(see later) is made. The paper does not mentidnthieainversed equation is connected to the Eikonal and HJ
equations, and hence is amenable to specializatimobpproaches.

Spalding approximately_reconstructd from solution of a more numerically benign Poissequation
(O%¢=-1). Thed(¢ reconstruction involves an auxiliary analyticaflgrived equation. The Eikonal, unlike the

Poisson approach is challenging to ¢odeThis is especially the case for unstructured sgritience its
implementation in established industrial CFD sadvegpresents a significant code developer timestmvent and
hence cost. Therefore, here, use of an Eikonal teoudorm, amenable to general geometry CFD code
implementation is explored. The form is reminiscefntthe Euler/Navier-Stokes equations (the key #@qna
modeled in CFD solvers). Also, since the Poissamethod is easy to implement in industrial codeis, approach is
further studied. For the current work, as the K2BB solver, the NASA CFL38 program is primarily used.
Operation counts show that differential @g@hes can be significantly faster than searchepores. For fixed
mesh problems it is unusual for the search proeedar contribute significantly to the total solutiaiost.
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Nonetheless, for increasingly-common non-statiomaegh flow solutions the repeated search cost besdnghly
significant. Then, differential approaches, whiemenake easy, safe use of previdiestimates, become especially
attractive. The newd approaches presented here are best viewed inntbisng mesh context. Although the
approaches to be presented have successfully kstdtfor distorting meshes, only stationary meshlts are
given here. Stationary meshes (where the stamitiglized d field is very different from the actual) most sighy
test robustness and convergence traits and so appnopriate. The equations considered are now ridhe
outlined.

II. Implicit/lterated d Equations

In this paper, three different wall distance methddsed on differential equations are used. Theseiraplicit
Eikonal, implicit HJ and Poisson, defined beloweTtikonal (Equation (2)) is an exatequation. When defining
the vector

U=0O¢ , (4)
it can be rewritten in the following implicfEikonal) advection analogous form

UesOg=1. (5)

In the above, for conveniencé1’¢ whereA — 0 is omitted. The vectod corresponds to the front propagation

velocity implied in the Eikonal equation whetd| E 1. With (4), the HJ (Equation (3)) can alsovin@ten in the
following implicit (H3) form

Ue Dp=1+T(¢)0°p (6)

The positivefunctionl™ (¢ is discussed later. Sinc(@qa)2 = (¢D¢))—¢DZ(0 and U = O¢ the following conservative
form of (6) is also possible

O (@)=1+r"0% @
where
r=r+g ®)

To gain Eikonalsolutions, using an initigbfield guess, equations (4) and (5) can be solveahiiterative sequence. HJ
solutions can also be made using the same approach.

Along different lines, substitution of theifson basegdistribution arising from solving Equation (6) twit) = 0
andl =1 into
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o[ 2] + 5 2] 2

also gives distancésThis is called the Poisson method. The derivatiof®) assumes extensive (infinite) coordinates in
the non-normal wall directions. Hence, unlike tlieoBal, d from Equation (9) is only accurate close to wallewever,
turbulence models only neddccurate close to walls.

A. Laplacian form and role

Neara fine convex feature (for example a wire) forottetical correctness accurate distances are neseded=d .
However, to prevent excessive far field influerte> d can be required further away from the featfireddjacent to a
convex featured°¢>>0. Therefore, the positive Laplacian inclusion if) (has the desired effect of

enlarging/exaggeratind(= ¢. Motivated by dimensional homogeneity, the need #sadl — 0,5 =dbut O’¢p - «
suggests

r=ed (10)

wherecsis a constant. Clearly more ‘aggressive’ functitivas (10) (e.gl” = £(-1+¢") ) are possible but these are not
explored.

At concave corners’g<0, henced << d. Therefore, with the Laplacian, the damping effedtextra’ walls,
discussed earlier, is naturally accounted for. BE#@nd hence Equation (5) distances will genekalgiscontinuous in
gradient (this partly occurs where fronts effediiygropagating from different walls collide). Thémee, the 0°¢ term
smoothing in Equation (6) has the potential to anbaonvergence.

lll.  Numerical Modeling
For brevity, the Equations (4-7) numerical modelianglescribed. Modeling for the much less challegdgpoissord
method is discussed in Ref. 4. Equations (4-7)beasolved on curvilinear and unstructured grids.deovilinear grids
they must be transformed using the chain rule fferéntial calculus in say ag, /7 system. When solving in this
system, metric terms (M) such &s(=9d¢&/0x), 71, , ¢,, and 77 are evaluated. This aspect will be discussed later.
Equation (6-7) diffusive terms are discretized gssgecond order central differences. The advectioalogous
derivatives in equations (5-7) are typically disized, just considering ancoordinate direction for example, using the
following 1% order upwind type of approximation

0
a_qo = nlflAlfl,j,k¢+ nl+lA|+l,j,k¢ (11)
X
where
_49-4q _4.-9¢
Ai—l.j,k¢’_T7111 Ai+1,j,k¢_AlTH1 (12)
5
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andn_ =1 for u_, >-u,andu_ >0elsen_=0; andn, =1 for -u, >u_and -u, >0elsen, =0. The
propagation velocities in the above are evaluatad {4). Where, for example

@ -4, _P. @ (13)

Settingl” = 0 in (7,8) shows that the conservation formhef Eikongl equation still has a Laplacian. Here the view is
taken that the discretizednservation form of the equation is being solved. Howevemltow optimal Eikonalsolution

(using a hyperbolic advancing front approach dbsdriater), the extra Laplaciaml’g is ignored. The approximation
of neglectingg1®g is equivalent to solving the non-conservation Eiqua5) with the alternative approximation that

ul = nlflulfl + n|+1u|+1 (14)

The above equation corresponds to using offseerdifice-based velocity components. These corresjotitbse
needed in the conservative Equation (7) form. Erf@wvpoint has no great accuracy implications. YWlgeneeds to be

accurate, for turbulence modelg]*@ — 0. Numerical tests confirm the validity of the ab@rguments.

Direction of
front movement

ChEL. TR

(v)

& - any

@ Geometric surface
(thin wire)

) Current or past
seed point

V)

Surrounding trial
@] points

..... Desired ‘DES’ front
extent

Figure 1: MF solution approach with one seed.
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A. Metric Discretization

The metric termsNM) must be carefully discretized. In CFL3D, for tHadex directiorM;; andM;, are first evaluated.
The latter, for example, involves geometric datahati and i+1 grid points. The$d,_, and M., difference based
constructs are then, as with most CFD codes, aserggive a single Mralue to be used in the discretized transport
equations. However, for strongly expanding neat gl spacings this standard approach resultbamerestimations
for the Eikonaland HJ To remedy this the following metric formulatientised

i-1 + n|+1M|+1 (15)

The standard CFL3D implementation corresponds {o= n,,, =1/2 in the above.

B. Stabilizing Measures
To ensure stable solutions for the Eikeraadd HJ velocity clipping and diagonal dominance enhancenaee tried.
Both use the observation that, in 2D (two-dimersjotihe exadt field should satisfy

R =|u; +v; ~4=0 (16)

whereu andv arex andy direction velocity components, respectively. Thaes to improve diagonal dominanBgand
R.¢ are added to both the discretized equation mdigigonals and source terms, respectively. Basdehjoation (16)
the following velocity clipping is used

[V ES R VRES1 17)

The Eikonal equation does not permit a backwaraistimovement The implication of this is that if in (6), for ample,
rO%p< -1 a theoretical violation has occurred (the sigthefEquation (6) right hand side gives the frowppgation
direction). Hence, for H3olutions the Equation (6) Laplacidr) (s modified to

L =ma{-C,rg| (18)

where 0< C <1. HereC = 1 is used. This is the theoretical correctnggseulimit. Since anti-diffusion is associated
with instability use of (18) should be viewed astability measure. As a further stability measundas-relaxation is

used either through the following= (1— a)¢™ + a@™ (wherea is an under-relaxation factor and the ‘new’ and’‘o

superscripts indicate iterative states) or usepsfeaudo time term.

When solving the Eikonal equation expligitigr each grid point, evaluation of the discredizeatrix coefficients
needs around 160 operations. The Eikcegliation needs 90 operations but then iteratiatssrequired (i.e. equations
(4,5) must be contained in some iterative loopgréfore, the key efficiency issue is the numbeétesétionsN typically
required.

C. Simultaneous Equation Solution

For Eikonalsolutions either essentially crude global GausskSi(GGS) type iterations or a marching front (MF)
approach are used. For Hblutions the MF approach can be used to gaimisialid field and then GGS used.
Alternatively, as for the Eikonalpurely GGS based solutions can be made. To slsévEoisson equation essentially a
GGS approach is used.
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The MF approach essence is illustrated usiggl. In this, a ‘wire’ is represented on a €sidn grid using a single
node point. Points surrounding this are considéseoe either seed, trial or those to be later sblidese points are
labeled through the marker variabkewith the following respective values 2, 1 or 0.sfart, a seed (or multiple seeds)
point is defined. The Eikonaéquations are applied times (until convergence) to assign this seedtihvalue. The
seed is represented in Frame () by the closed alyrithe Eikonalequations are then solved for all immediate seed
neighbors (trial points). Thess = 1 points are shown as open symbols. As shovaname (l1), the trial point with the
minimumd is taken as the next seed. Now, for this paiats 2. Then, as shown in Frame (llt) for all immediate
neighbors to the new seed (for whit# 2) are calculated. Hence the next seed pointiycat found. Frames (IV) and
(V) show subsequent development stages for a cisekwoving circular front. In summary the procedaras follows:

a) Define a seed point;
b) lteratively solve fod at immediate neighbors to the seed (trial pots)
c) Make the trial point with the minimuththe next seed and return to (a).

This procedure is continued umisi= 2 for all points inQ or a smaller domain/exte2 . The latter domain is
identified by the Fig. 1 dotted line. The EikonaFNhethod’s compatibility with smaller domains isfig. This is
because, many turbulence models and DES (Detactieyl Emulation only needd to a maximum of about 173
the boundary layer thickness. In a practical systall surface adjacent points can be taken asssaed what is
called an ‘active front’ produced. For best affitcy a heap-sort procedure is required. This hatsbeen
incorporated as part of this work. Cleary, basedperation countd\ < 2 is needed for the Eikonpapproach to
match the Eikonal’s efficiency. However, a typi€konal N value is 4 (See Ref. 13) i.e. for stationary meshe
Eikonal equation has about twice the computational cost@fEikonal. For moving meshes this differenceatiye
decreases.

D. Initial/Starting Conditions

For the Eikonagland HJ 1 < @< «in Q is found adequate. However, for MF solutigns— < is used. Note, when
using the MF approach to give a DES distance figtdCpesf\ (Cogs is a turbulence modeling constant) can be used
whereA;, = max@x,Ay,Az). Thed computation will naturally stop wheh= CpegAi. No DESd results are shown here. An
example can be found in Ref. 13. For the Poissproapghg =0 is adequate.

1F 1
0.9 : .
- — Exact solution

08f °%81 o Eikonal

07k

N /QXQQ

¢
=Y

o
>

Computed distance

04F
0.3F
0.2F 0.2

0.1F

0 0.2 0.4 0.6 0.8 1
Actual Distance

Fig. 2: Badly distorted flat plate grid. Fig. 3: Predicted against a@l d at x = 0.5.

E. Boundary Conditions
Conditions on the domain boundaries are now destrifit solid walls the following Dirichlet conditias applied

¢=0 (19)
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At flow/far field boundaries
—Z=0 (20)

can be used, whenme is the boundary normal co-ordinate. HoweverQifis sufficiently large, (19) makes a
stable, most computationally economical far fielsubdary condition. It is especially preferred fbe tPoisson
method where it gives much faster convergence.

IV. Results and Discussion

The following geometries are considered: (a) Haitep (b) Single element airfoil (NACA4412); (c) kg body and (d)
Wing flap. Whered deviation (‘error’) values are given, these afatiee to NSS distances. The deviation is defined
using the equation below

Error = 10qd“§s—_d) (21)

NSs

wheredyss is the distance coming from the nearest surfageclse Thed without the subscript in Equation (21) is the
distance field for which the error is being evatutit Flow solutions use the Spalart and Allm#4réSA) turbulence
model. This probably has the most extremequirements of most standard turbulence modelseedsd accurate for
around 1/% the boundary layer thickness. Hence it is a gandiiciate fod modeling tests.

1

| T T T
: 4 1‘, i ﬂ, " }\’r' !
" TR
IR
§ T
" i Nm MW
o SANNRARARES
@ (b) X

Fig. 4: Distorted grid Ogdata: (a) |U| and (b) U vectors.

A. Flat Plate (Case (a))

Initially, for testing just the Eikonaiethod, a flat plate is used. This iyat 0, in a 2D square domaih, with sides of
unit length. First a grid (not shown) with stromidgexpansion in thg direction is considered. Table 1 givesd%rrors
for different approximate geometric grid expansiopaith offset and centered metrics.
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ay % d Error

Offset | Centered

metrics | metrics

1.1 | 0.48 1.53

1.7 | 0.99 8.25

26 | 3.15 15.0

Table 1. Eikonal % d errors with
offset and centered metrics.

Clearly, (see Table 1) with centered differenceslargera;, values serious errors arise. This is not surgisRoach&
shows for accurate flow solutiomg < 1.3 is needed. The front propagation naturd@fHikonal(and Eikonal) makes
errors additive. Furthermore, centered differeraresinconsistent with a hyperbolic propagating tfiigmoblem. Hence,
all the remaining Eikonatesults use offset metrics.

Next, the effect of using a badly distortedigsi explored. Fig. 2 shows the badly distortedvitimear’ grid used in
this study. This grid is intended to severely tesustness of the Eikonahethod. Fig. 3 plots predicted against actual
distancesy( atx=0.5 for the Fig. 2 grid. The full line gives theaet solution. The symbols give the distances ptedi
by the Eikonal method. The figure shows that, even with an ex¢herdistorted grid, reasonable distances can be
obtained.

Log(Ru)

0 20 40 60
Iterations

Figure 5: Distorted grid plot of log (R,)
against GGS iterations.

Fig. 4 shows Fig. 2 grid velocity data. Framesafa) (b) givel| contours andl vectors, respectively. Considering the
poor grid form the velocity magnitudes and dirattaye surprisingly good. Fig. 5 gives a Fig. 2 giiot of log R)
against GGS iterations. Through its monotonic reetiae plot reflects the stable convergence.

B. Single element airfoil (Case (b))

The Poisson, Eikonand NSS procedures are now compared for a NACA4&#idll. The attack angle is 13.87
M = 0.2 andRe = 1.52 x 18(based on the wing chord), Fig. 6 shows the 3 zone circa 25,000 cell oveyse used as
part of the studies. Fig. 7 gives Eikgridlvectors. Correctly, the vectors are surface nariftedir magnitude is close to

unity. Overset Poisson solutions are madeCorand also just the inner zone regicﬁ Y labeled in Fig. 6. Obviously,

the latter solution is most computationally effidieAt the Q boundaries the Dirichlet conditiop= 0 is used. Fig. 8
showsd contours representing in the following respectirmes the: (a) NSS; (b) Eikopalc) Poisson and (d)

Q Poisson results.
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Figure 6: NACA4412 overset solution gt.
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Figure 7: Eikonal, U vectors.

Fig. 9 givey'<400,d deviation histograms. Frame (a) is for the Eikpeguation. The average deviation is 0.5 %.

Frame (b) is the overset Poisson domain solution. Although not shown by the histogs, the averagkdeviation for
the Poisson is significantly higher (2.5%) thart tbathe Eikonal equation.
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Fig. 10 gives a zoomed in view of trailindge region Poissod deviation contours. As can be seen, a #ey
overestimation zone is the sharp convex trailingeegeometry region. This overestimation zone, wkwvghalso be
produced with the H&quation, is potentially desirable (see later).

C. Co

Eikonal | 1.704| 0.03466
NSS 1.698| 0.03496
Poisson| 1.713 0.03543
Table 2.C, and Cy's for different d fields.

Table 2 gives lift@ ) and dragCp) coefficients. Some minor differences are evideat.surface pressure plots and
boundary layer velocity profiles lines/results effeely overlay. Fig. 11 gives SA, trailing edgegian, turbulent
viscosity (4) contours for the NSS (Frame (a)), and PoissoantEr (b)) approaches. The largée > 1 Poisson
distances, reduce the modeled turbulence destuttics slightly increasing; by just under 5%. Tests for flow over a
thin wire* suggest turbulence levels for the exaggeratedriiss provided by the HJ and Poisson methods, are m
realistic than those provided by the NSS.

Clearly, for the current case, turbulenderisities downstream of the airfoil have insigmifit influence on the
parameters of interest in a design context. Howefeermultiple element airfoils it is not inconcaie that more
significant solution differences could arise. Frample, these can be caused by a peak in modeladence energy
convecting close to the center of the leading edgedownstream element. Then small changes ituthaelence energy
peak’s positiorcan give rise to different solutions.

The Poisson and NSS methods were also ssedraof a single airfoil ‘aeroelasticity’ anatysiomparing with
AGARD Case 3 measuremelitsThe Poisson equation shows fast convergence iaed mstantaneou§,, Cp and
moment coefficient values very similar to NSS. Ehessults are reportedRef. 13.

(a)

(b)

(d)

0
|

Figure 8: Case (b) (NACA4412¥ contours: (a) NSS; (b)
Eikonal,; (c) Poisson and (d) inner block Poisson.
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C. Wing body (Case (c))

For this case the angle of attack is 2,87 = 0.802 andRe = 13.1 x 16 (based o). The single block grid, for which
the body surface zone is shown in Fig. 12, hasna@9 million cells. For this case the PoissokoBa| and NSS
approaches are tested. Fig. 13 givesythe 400-regiond deviation histogram for the Eikonaind Poisson methods.
The average ‘errors’ are 3.13 % and 3.14 %, reseet The Poisson’s tendency to over predids evident in the
histograms. Table 3 giv€y andC; values for the differert fields. For this more complex geometry case, tlegame
differences betwee@, andC; is lower than for Case (b).

D. Wing Flap (Case (d))

For a multi-element airfoil case, the wing and ftagles are 2and 46, respectively. The wing-flap gap is 0.6%aof
The Reynolds number is 23 x ®1based onc, andM = 0.18. A small part of the highly stretched 1@dk
approximately 0.9 million-cell grid is shown in Fitda. For this case the Poisson, NSS and Eikorathods are tested.
Fig. 14b gives EikonalU vectors. Fig. 15 gives a zoomed in view of areaCArrectly, the vectors are surface
normal. Magnitudes are close to unity. Fig. 14cegiEikongld contours. Since they are virtually identical, NSS
contours are not shown. Poisson contours can belfivuRef. 4.
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Figure 9: Case (b)y+ < 400d deviation histogram:
(a) Eikonahnd (b) Poisson.
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Figure 10: Case (b) (NACA4412) Poissathdeviation contours
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Figure 11: Turbulent viscosity contours: () NSS ad (b) Poisson.

C. Co
Eikona| 0.6633 | 0.04839
NSS 0.6632 | 0.04855
Poisson 0.6635| 0.04842

Table 3. Case (cC. and Cp's
for different d fields.

Figure 12. Case (c) (wing body) surface grid.

14
American Institute of Aeronautics and Astronautics



Fig. 16 givey" < 400d deviation histograms. Frame (a) is for the Eikprialame (b) is for the Poisson. The
average Frame (@) deviation is 2.1 %. The Poisgaat®n has a 1% deviation. This low Poisson ‘erretative to
the Eikonal equation seems to contradict the histogram eviglehlse contradiction is because the Eikonal egnatio
has some large deviations at just a very few poin@learly, the Frame (a) Eikonal deviation dsttion has the
least spread. For the Poisson method (see Framet(®©dn be seen there is a slight tendency to peedictd. As
can be inferred from Table 4, Poisson method liftl @rag coefficients are within 0.05% of those fioe NSS
procedure. For the Eikonaquation the deviation is a little greater butthatt significant.

Pleasingly, complex geometry tests show@{3S convergence rate is similar to the Eikpridénce the HJ
Laplacian does not seem that important for stabilts value being more in offering the capabilitiycontrolling
wall distances near convex or concave surfaces.

C. Co
Eikonal | 2.815 | 0.0582
NSS 2.810| 0.0584
Poisson| 2.811] 0.0584
Table 4. Case (dC, and
Cp's for different d fields.
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Figure 13: Case (c) (wing bodyy+ < 400d deviation
histogram: (a) Eikonal, and (b) Poisson.
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Figure 14: Wing flap geometry near surface informaion:
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Figure 15: gives a zoomed in view of area A.
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Figure 16: Case (d) (wing flap)y+ < 400d deviation
histogram: (a) Eikonal, and (b) Poisson.

V. Conclusions

Implicit forms of the Eikonal (Eikongland Hamilton-Jacobi (K)Jwall distance equations were presented. These
are reminiscent of advection and advection-diffasguations. Because of this, the Eikpaald HJ were found to

be relatively easy to implement in an establisimetlistrial CFD solver. The implicit equations were found to have
robust convergence. Geometries studied includeglesiand two element airfoils and a wing-body coafagion.

For HJ/Eikona| accuracy, offset metric differences are requikdimple, approximate, Poisson-equation-based
distance approach was also found effective. Siha#idi not require offset metric evaluations it weasiest to
implement. The sensitivity of flow solutions to pible modifications ofl was explored. Results were not greatly
affected by wall distance traits, partly becauseupar geometries such as thin wires were not wewl
Downstream of the airfoil trailing edge, intensitswere altered by just under 5 %.
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